1358

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Achieving Practical Symmetric Searchable
Encryption With Search Pattern Privacy
Over Cloud

Yandong Zheng ™, Rongxing Lu
Fan Yin"“, and Hui Zhu

, Senior Member, IEEE, Jun Shao",
, Senior Member, IEEE

Abstract—Dynamic symmetric searchable encryption (SSE), which enables a data user to securely search and dynamically update the
encrypted documents stored in a semi-trusted cloud server, has received considerable attention in recent years. However, the search and
update operations in many previously reported SSE schemes will bring some additional privacy leakages, e.g., search pattern privacy,
forward privacy and backward privacy. To the best of our knowledge, none of the existing dynamic SSE schemes preserves the search
pattern privacy, and many backward private SSE schemes still leak some critical information, e.g., the identifiers containing a specific
keyword currently in the database. Therefore, aiming at the above challenges, in this article, we design a practical SSE scheme, which not
only supports the search pattern privacy but also enhances the backward privacy. Specifically, we first leverage the k-anonymity and
encryption to design an obfuscating technique. Then, based on the obfuscating technique, pseudorandom function and pseudorandom
generator, we design a basic dynamic SSE scheme to support single keyword queries and simultaneously achieve search pattern privacy
and enhanced backward privacy. Furthermore, we also extend our proposed scheme to support more efficient boolean queries. Security
analysis demonstrates that our proposed scheme can achieve the desired privacy properties, and the extensive performance evaluations
also show that our proposed scheme is indeed efficient in terms of communication overhead and computational cost.

Index Terms—Dynamic SSE, search pattern privacy, enhanced backward privacy, boolean query

1 INTRODUCTION

AS the data generated by the Internet of Things (IoT),
social media and the web continue to increase, the
global big data market will grow from $18.3bn in 2014 to an
incredible $92.2bn by 2026 [1]. Such an explosive growth of
data motivates an increasing number of individuals and
organizations to outsource data to the powerful cloud [2],
[3]. Meanwhile, as the data in some fields (e.g., eHealthcare)
contain some private information and at the same time the
cloud servers may not be fully trusted, data should be
encrypted before being outsourced to the cloud. However,
directly outsourcing encrypted data inevitably hides the
characteristics of the data such as the keywords in the docu-
ments, and thus makes it challenging for the data user to
search the outsourced documents meeting some criteria

o Y. Zheng and R. Lu are with the Faculty of Computer Science, University
of New Brunswick, Fredericton, NB E3B 5A3, Canada.
E-mail: {yzheng8, rlul}@unb.ca.

o]. Shao is with the School of Computer and Information Engineering, Zhejiang
Gongshang University, Hangzhou, Zhejiang 310018, China.

E-mail: chn.junshao@gmail.com.

e F. Yin is with the Information Security and National Computing Grid
Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031,
China. E-mail: yinfan519@gmail.com.

o H. Zhu is with the State Key Laboratory of Integrated Services Networks,
Xidian University, Xi'an, Shaanxi 710071, China.

E-mail: zhuhui@xidian.edu.cn.

Manuscript received 21 Oct. 2019; revised 2 Mar. 2020; accepted 27 Apr. 2020.
Date of publication 4 May 2020; date of current version 15 June 2022.
(Corresponding author: Rongxing Lut.)

Recommended for acceptance by . Liu.

Digital Object Identifier no. 10.1109/TSC.2020.2992303

(e.g., “return all documents containing keyword w”). Although
the data user can download each encrypted document and
check whether it satisfies the search criteria or not, this
approach is inefficient and impractical in terms of computa-
tional cost and communication overhead.

In order to achieve much more efficient search over out-
sourced encrypted documents, Song ef al. [4] proposed the
first searchable encryption scheme. After that, Goldwasser
et al. [5] and Garg et al. [6] respectively introduced the fully
homomorphic encryption and ORAM based searchable
encryption schemes. Although both of the two schemes
can achieve highly secure searchable encryption, the huge
computational cost in the ORAM technique and fully
homomorphic encryption technique makes the search effi-
ciency in such schemes not desirable. Then, in order to bal-
ance the security and search efficiency of the searchable
encryption schemes, symmetric searchable encryption
(SSE) was proposed, which improves the search efficiency
at the cost of small leakage including access pattern and
search pattern. The access pattern reveals which docu-
ments are returned in a query and the search pattern leaks
which search queries refer to the same keyword. After the
first SSE was proposed in [4], Curtmola et al. [7] defined
the security model of SSE, i.e., adaptive security of SSE,
and introduced the first inverted index based SSE scheme.
The inverted index technique builds a map from each key-
word to the documents’ identifiers matching it, which is
an important basis for many subsequent works including
our work in this paper.

1939-1374 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0002-1046-228X
https://orcid.org/0000-0002-1046-228X
https://orcid.org/0000-0002-1046-228X
https://orcid.org/0000-0002-1046-228X
https://orcid.org/0000-0002-1046-228X
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0002-5853-633X
mailto:yzheng8@unb.ca
mailto:rlu1@unb.ca
mailto:chn.junshao@gmail.com
mailto:yinfan519@gmail.com
mailto:zhuhui@xidian.edu.cn

ZHENG ETAL.: ACHIEVING PRACTICAL SYMMETRIC SEARCHABLE ENCRYPTION WITH SEARCH PATTERN PRIVACY OVER CLOUD

Although the aforementioned proposals can support effi-
cient search over encrypted data, most of them are static SSE
and thus they cannot support the dynamic update of the out-
sourced encrypted data. Aiming at the dynamic update,
Kamara et al. [8] introduced the first dynamic SSE scheme
with sub-linear search time and followed by several other
dynamic SSE schemes [9], [10]. However, due to the update
operations, the dynamic SSE schemes have more potential
leakages than the static SSE schemes. In specific, the addition
operation may reveal the information regarding whether the
current updated keyword was searched in previous queries,
i.e., forward privacy. Similarly, the current search query may
reveal the documents that match the current search keyword
but have been deleted before, i.e., backward privacy.

Forward privacy was first introduced in [11] and it became
increasingly important since Zhang et al. presented a file-injec-
tion attack in [12]. Such an attack is particularly effective, espe-
cially when the dynamic SSE schemes are not forward private
[12]. However, as pointed out in [12], it is difficult to conduct
the attack in the “closed systems”, as all documents in the
“closed systems” are outsourced by the client and it is almost
impossible for an adversary to inject documents into the sys-
tems. As for the backward privacy, it was first formally
defined by Bost et al. [13]. In specific, they defined three types
of backward privacy, i.e., type-I, type-II, and type-III back-
ward privacy. Among them, the type-I backward privacy is
the most secure one, and for a specific keyword w, it only leaks
the number of previous updates associated with w, the identi-
fiers containing w currently in the database, and when each of
such documents was inserted. At the same time, Bost ef al.
and Chamani ef al. respectively constructed a type-I backward
private SSE scheme in [13] and [14].

Nevertheless, two challenges in the dynamic SSE
schemes still have not been well addressed. The first one is
that none of the existing dynamic SSE schemes preserves
the search pattern privacy in an efficient way. Though
ORAM or fully homomorphic encryption based searchable
encryption schemes can achieve search pattern privacy,
both of them are inefficient and impractical in terms of com-
munication overhead and computational cost. The second
one is that the current backward private SSE schemes still
leak some critical information as mentioned above even if
they have achieved type-I backward privacy. Thus, aiming
at the above challenges, in this paper, we design a practical
SSE scheme with search pattern privacy, forward privacy
and enhanced backward privacy. Besides these privacy
properties, our proposed scheme can be easily extended to
support efficient boolean queries, Specifically, our contribu-
tions are four-fold as follows.

o First, we leverage k-anonymity technique and encryp-
tion technique to design an obfuscating technique,
which serves as the core idea of our proposed scheme
for privacy preservation.

e Second, based on the obfuscating technique, pseudo-
random function and pseudorandom generator, we
design a basic dynamic SSE scheme to support single
keyword queries and achieve search pattern privacy,
forward privacy and enhanced backward privacy,
where the enhanced backward privacy leaks much
less information than type-I backward privacy.

1359
N Outsource encrypted files and index
Multi-keywords Query Request
@) Query Response
Client Server

Fig. 1. System model under consideration.

e Third, based on our basic scheme, we propose an
extended SSE scheme supporting efficient boolean
queries.

e Finally, we analyze the security of our proposed
scheme and show that it achieves desired privacy
properties. And at the same time, we conduct exten-
sive experiments to evaluate its performance, and
the results show that it is indeed efficient in terms of
communication overhead and computational cost.

The remainder of this paper is organized as follows. In

Section 2, we introduce our system model, security model
and design goal. Then, we describe some preliminaries in
Section 3. In Section 4, we present our scheme, followed by
security analysis and performance evaluation in Sections 5
and 6, respectively. Finally, we describe the related work in
Section 7 and draw our conclusion in Section 8.

2 MOoDELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

2.1 System Model

In our system model, we consider a typical dynamic SSE
scheme with support for both single keyword queries and
boolean queries, which consists of two entities, i.e., one cli-
ent and one (cloud) server, as shown in Fig. 1.

o Client: The client collects N documents with identifiers
ID = {id,,ids,...,idy}. Each document id; contains a set of
keywords W;, which is a subset of the collection of all key-
words W = {wy, wa, ..., wy},i.e, W; C W. Due to the limited
computational capability and storage space, the client stores
his/her documents in the cloud server. As these documents
may contain some sensitive information and the cloud server
is not fully trusted, the client tends to encrypt them before
outsourcing them to the server. Then, the client can access
these documents by performing single keyword queries or
boolean queries, e.g., a single keyword query may be “return
all documents that contain keyword w;”, and a boolean query
may be a conjunctive query like “return documents that simul-
taneously contain a set of keywords, e.g., {wy, wa}".

A straightforward method to deal with keyword queries
is to traverse all encrypted documents and return docu-
ments that meet the queried criteria. However, the overhead
of this method is too large. In order to improve the query
efficiency, in this paper, the client builds an inverted index
database DB for his/her keywords. As shown in Fig. 2, each
data record in the index database DB corresponds to a key-
word w; € W and a collection of documents’ identifiers con-
taining w;, denoted by ID;. After that, the client will encrypt
DB and outsource it to the cloud server. With this index
database, the client can efficiently access and maintain the
documents in the cloud server. At the same time, both the

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

1360
DocID | Set of keywords Keyword | Set of doc IDs
idy W, cw wy ID, € ID
id, W, cw | ndexBuldne T, ID, C ID
idy Wy S W Wy 1D, € ID

Fig. 2. Inverted index database building.

encrypted documents and the inverted index database can
support users’ dynamic update, i.e.,, adding or deleting
some keywords from a given document.

e Server: The (cloud) server is powerful in both computa-
tional capability and storage space. It is responsible for stor-
ing encrypted documents along with encrypted inverted
index database outsourced by the client, and processing the
keyword query requests from the client. In specific, on
receiving a keyword query request, the cloud server finds
out all documents’ identifiers satisfying the queried criteria
and returns them to the client.

2.2 Security Model

In the security model of our dynamic SSE scheme, we con-
sider the client is honest, i.e., he/she will follow the protocol
sincerely. At the same time, the cloud server is considered to
be honest-but-curious. That is, the cloud server will honestly
follow the protocol to store the encrypted documents
together with the inverted index database and deal with the
keyword query requests from the client, while it may be curi-
ous about some private information, such as the plaintexts of
documents and inverted index database stored in the server,
as well as the queried keywords in the query requests.
Besides, our system is designed to be a “closed system” and
each data record must be encrypted by the client with the
secret key, so the cloud server cannot launch the file-injection
attack of [12] due to the difficulty of injecting attack docu-
ments. Besides the above security requirements, we aim to
preserve three types of privacy in our dynamic SSE scheme,
i.e., search pattern privacy, forward privacy and enhanced
backward privacy. The details on these three types of privacy
will be described in Section 3. Note that there may be other
active attacks such as data pollution attack and deniable of
service attack, however, as we focus on privacy preservation
in this work, those attacks are beyond the scope of this paper,
and will be discussed in our future work.

2.3 Design Goal

In this work, our goal is to design a practical and privacy-
preserving dynamic SSE scheme. Specifically, the following
objectives should be satisfied.

e Privacy preservation: The basic security requirement
of our proposed scheme is privacy preservation.
That is, the data stored in the cloud server including
encrypted documents and encrypted inverted index
database should be privacy-preserving, and the que-
ried keywords in the query requests should be pri-
vacy-preserving. At the same time, the proposed
scheme should satisfy search pattern privacy, for-
ward privacy and enhanced backward privacy, as
described in Section 2.2.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

e [Efficiency: In order to achieve the above privacy
requirement, additional communication overhead
and computational cost will be incurred. Specifically,
keyword search queries over encrypted inverted
index database will increase the computational over-
head at both the client side and the server side, and
bring additional communication overhead between
the client and the server. Thus, in the proposed
scheme, we aim to minimize the communication
overhead and computational cost during the key-
word search queries.

3 PRELIMINARIES

In this section, we first introduce the formal definition and
privacy concerns of dynamic SSE schemes. Then, we briefly
review the pseudorandom function and pseudorandom
generator techniques, which will be used in our proposed
scheme.

3.1 Dynamic SSE

A dynamic SSE scheme 3 = (Setup, Search, Update) is run
between the client and the server, and consists of one algo-
rithm Setup and two protocols Search, Update.

Setup(\): Given a security parameter), the setup algo-
rithm generates a secret key K for the client and an
encrypted index database EDB for the cloud server. At the
same time, it outputs the local state of the client o.

Search(K,o,w;; EDB): The search protocol is used for
performing keyword queries over the database and is run
between the client and the server. In this protocol, the client
and the server respectively inputs (K,o,w;) and EDB,
which denotes that the client intends to search all docu-
ments that contain keyword w; over EDB. As the output, the
server protocol returns the collection of documents’ identi-
fiers containing wj, i.e., ID;, to the client.

Update(K,0,id;, w;,op; EDB): The update protocol, run
between the client and the server, is used to update the data-
base EDB. In this protocol, the client inputs (K, 0, id;, w;, op)
to update a keyword w; in the document id; and the update
operation op is either addition or deletion.

Correctness: Generally speaking, a dynamic SSE scheme is
correct if and only if all search queries can return correct
query results, e.g., the search query for w; can return exact
ID;. As for the formal definition of the correctness of the
dynamic SSE scheme, we refer readers to [10] for details.

Security: As described in [13], the security of the dynamic
SSE scheme is measured by a leakage function £ = (L5
L:Search7 ﬁUpdatf%)’ where ESetu,p, ES{:m‘ch and ﬁUpdate are leakages
with respect to the setup algorithm, search protocol and
update protocol. Informally, a dynamic SSE scheme is secure
if and only if it reveals nothing to the adversarial server except
for the leakage function £. This is formally captured by a real-
world and ideal-world experiment defined as follows.

Definition 1 (Adaptive Security of Dynamic SSE [13]).
A dynamic SSE scheme %, = (Setup, Search, Update) is adap-
tively secure with respect to the leakage function L iff for all
PPT adversaries Adv issuing polynomial number of queries q,
there exists a PPT simulator Sim such that |Pr[RealidT
(A, q) = 1] = PrlIdealy g, ¢ (A, @) = 1]| is negligible in A,

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

ZHENG ETAL.: ACHIEVING PRACTICAL SYMMETRIC SEARCHABLE ENCRYPTION WITH SEARCH PATTERN PRIVACY OVER CLOUD

where Real5,, (), q) and Idealidus,;m,ﬁ()\,q) are two games
defined as follows.

° Realidv(/\ ¢): In the real-world game, the adversary
Adv first gets back an index database EDB generated
by running Setup()\) algorithm. Then, Adv can
search/update the database ¢ times by calling the
search/update protocol, where ¢ is a polynomial
number. At the same time, Adv observes the real
transcripts generated in the search/update protocol
and outputs a bit b.

o Idealidwysm_’ (A @) In the ideal-world game, the
adversary Adv obtains an EDB generated by a simu-
lator Sim with leakage L. Then, Adv performs the
same ¢ search/update operations as that in the real-
world game by calling the simulator’s search/
update protocol, where ¢ is a polynomial number. At
the same time, Adv observes the simulated tran-
scripts generated in the search/update protocol and
outputs a bit b.

3.2 Privacy Concerns of Dynamic SSE

In dynamic SSE, search pattern captures the information that
which queries refer to the same keyword and it is a common
leakage in the existing dynamic SSE schemes [13], [14], [15].
Let @ List be a list of search queries and each query in Q) List
is in the form of (¢,w;), which denotes that the keyword
w; € W is searched in timestamp ¢. Then, as described in
[15], the search pattern over keyword w; can be defined as

sp(w;) = {t|(t,w;) € QList}.

Definition 2 (Search Pattern Privacy). An L-adaptively
secure SSE scheme keeps search pattern privacy iff £L5"" does
not leak the search pattern information, i.e., {sp(w;)|w; € W}.

Forward privacy of dynamic SSE schemes was first pro-
posed in [11] and attracted great attention after the file-injection
attack was proposed [12]. Generally speaking, the forward
privacy guarantees that the keyword related to the current
update operation should not be linked to keywords that were
searched before. Suppose that LastTime(w;) leaks the time-
stamp when w; was last searched /updated. At the same time,
LastTime(W) = {LastTime(w), ..., LastTime(wy)} leaks the
last updated /searched timestamp of each w; € W, but the one-
to-one relationship between LastTime(w;) and w; is hidden. In
other words, with LastTime(W), it is difficult for the adversary
to distinguish which one is the last updated/searched time-
stamp of a specific keyword w;. Then, the forward privacy can
be formally defined as follows.

Definition 3 (Forward Privacy). An L-adaptively secure SSE
scheme keeps forward privacy iff the update leakage function
L£Udate can e written as: LY (op,w;,id;) = L' (op,id;,
LastTime(W)), where op is addition or deletion and L' is a
stateless function.

Backward privacy of dynamic SSE ensures that search
queries on keyword w; cannot be linked to the documents
that contain w; but have been deleted previously. Bost et al.
first formally defined the backward privacy and introduced
three types of backward privacy with different leakage func-
tions in [13], where the type-I backward privacy leaks the least

1361

information. In specific, it leaks the number and type of previ-
ous updates matching each keyword w;, the documents’ iden-
tifiers matching w; in the current database, and when each
such document was inserted [13]. In this work, we aim to fur-
ther reduce the leakage of backward privacy and achieve
enhanced backward privacy with less leakage than the type-I
backward privacy. Specifically, the enhanced backward pri-
vacy only leaks each update operation, updated document’s
identifier, the documents’ identifiers matching the searched
keyword and LastTime(W). However, different from the lea-
kages defined in the type-I backward privacy, the leakages in
the enhanced backward privacy cannot be matched to a spe-
cific keyword, which makes these leakages become trivial for
adversary. Thus, the enhanced backward privacy leaks less
information than the type-I backward privacy and can be for-
mally defined as follows.

Definition 4 (Enhanced Backward Privacy). An L-adap-
tively secure SSE scheme keeps the enhanced backward privacy iff
the leakage function L satisfies that LYP"(op,w;,id;) =
L' (op,idj, LastTime(W)), —and — L£5"(w;) = L£"(ID,
LastTime(W)), where £ and L" are two stateless functions,
and 1ID); contains the documents” identifiers matching w;.

3.3 Pseudorandom Function

The pseudorandom function (PRF) is a kind of random encryp-
tion function, which was first proposed by Goldreich et al. [16].
Let F' : K x X — Y denote a PRF family from X to), where K
denotes the key space {0,1}". Then, without knowing the
secret key K, it is difficult to distinguish F'(K, -) from F'(K,-),
where K is randomly chosen from K and F’(K, -) is a random
function from X to). That is, for all PPT adversaries Adv,
|Pr[Adv” 5 (12) = 1] — Pr[Adv” &) (1Y) = 1]] is negligible
in A

3.4 Pseudorandom Generator

Let G: X —) denote a pseudorandom generator (PRG).
Given a seed = € X, GG can generate a long random number
G(z) € Y. At the same time, for all PPT adversaries Adyv, it
is difficult to distinguish G(z) from a random number 2/,
ie, |Pr[Adv(G(x)) =1] —Pr[Adv(z') =1]| is negligible,
where 2’ has the same length with G(z).

4 OUR PROPOSED SCHEME

In this section, we present a basic SSE scheme supporting sin-
gle keyword queries. Then, based on the basic SSE scheme,
we propose an extended SSE scheme supporting boolean
queries. Before delving into the details, we first introduce an
obfuscating technique, which serves as the core idea of both
our basic SSE scheme and the extended one.

4.1 The Obfuscating Technique

Suppose that the encrypted index database (i.e.,, EDB) is
stored as a map in the server. Each data record in EDB is a
key-value pair (loc;, ¢;) associated with a specific w;, where
¢; denotes the encrypted ID; and loc; denotes ¢;’s location in
EDB. Then, we can design an obfuscating technique to
access EDB with search pattern privacy. The main idea is to
access the data record with k-anonymity technique, and re-
encrypt the accessed data record with a new key-value pair.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

1362

key-value pairs matching wq, w,, w3 EDB

i Original key-value pairs:
i (locy, ¢1), (locy, ¢3), (locs, c3) are
i randomly stored in the grey locations.

i New key-value pairs:
i (loc'y, 1), (loc'y, ¢'3), (loc's, ¢'3) are
i randomly stored in the black locations.

Fig. 3. An example of the obfuscating technique with &k = 3.

In specific, when the client intends to access a data record
associated with a specific keyword w;, he/she will simulta-
neously access k data records matching w; and other k£ —1
random keywords. Suppose that {(loci,cq),..., (lock,cr)}
denotes the key-value pairs of the k accessed data records in
EDB. Then, after the client accesses these data records, he/she
will generate k new key-value pairs {(loc|,d,), ..., (loc,c})}
and restore them to EDB. These key-value pairs satisfy the
obfuscation property. That is, without the secret key, the
adversary has no idea on the one-to-one match between new
key-value pairs {(loc|,d)),...,(loc,,c,)} and original key-
value pairs {(locy, ¢1), . . ., (locy, ¢) }. Fig. 3 is an example of the
obfuscating technique when k£ = 3. From Fig. 3, we can see
that original key-value pairs {(loci,c1), (locs,cs), (locs,cs)}
and new key-value pairs {(loc},c]), (locy,c}), (locs, ¢4)} look
like they are randomly stored in EDB and the one-to-one
match between them is hidden. In other words, the obfuscat-
ing technique preserves the privacy that which grey location
(loc;, ¢;) is stored and which black location (loc}, ¢}) is stored.
At the same time, the obfuscating technique preserves the pri-
vacy that which two locations including a grey location and a
black location correspond to a same keyword w; fori = 1,2, 3.
Furthermore, the obfuscating technique can well preserve the
search pattern privacy and the details will be introduced in
Section 5.

4.2 Basic SSE Scheme Supporting Single Keyword
Queries

Based on the obfuscating technique, we present our basic

SSE scheme supporting single keyword queries, which is

comprised of one algorithm Setup, as well as two protocols

Search and Update.

4.2.1 Setup

The client is responsible for bootstrapping the scheme by
running the setup algorithm, as shown in Algorithm 1. In
specific, given a security parameter), the client first gener-
ates a secret key K for the pseudorandom function F'. Then,
he/she initializes two empty maps FileCnt and DictW,
which respectively store the total number of times that each

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

keyword is accessed and the encrypted index database
EDB. In the setup phase, each keyword’s value in FileCnt is
set to be 0, i.e., { FileCnt[w;] = Olw; € W}. At the same time,
for each data record (w;,ID;) € EDB, the client first repre-
sents ID; to be an N-bit bitmap B; = b;1b;2 - - - b; n, where N
is set to be the maximum number of documents in the sys-
tem and each bit b, ; is associated with the document id; for
Jj=1,2,...,N.If id; belongs to IDD;, b; ; is set to be 1. Other-
wise, b;; =0. Then, the client encrypts (w;, B;) as
¢; = G(Fk(w;, FileCnt[w;]||1)) ® B; and places it in DictW
at the location of loc; = Fg(w;, FileCnt[w;]||0), i.e.,
DictWlloc;] = ¢;, where G is a pseudorandom generator and
generates IV binary bits. Note that, ID; is empty in the setup
phase, so each bit b; ; in bitmap B; = b;1b; - - - b; x is set to
be 0,i.e., b;; =0 for j=1,2,..., N. Finally, the client sends
DictW to the server and locally keeps K and FileCnt, where
DictW and FileCnt are respectively regarded as the
encrypted index database EDB and the client’s local state o.

Algorithm 1. Setup(\)

K «— Gen(1")
: FileCnt, DictWW «— empty map
: fori =1toddo
FileCnt|w;] =0
Bits B7 = bi,lbi,Z e b{,_’l\r =00---0
loc; = Fg(w;, FileCnt[w;]||0)
C; = G(FK(’LUZ', leeCnt[wl]Hl)) (&) Bz
DictW{loc;] = ¢;
9: end for
10: o « FileCnt
11: EDB « DictW
12: return EDB to the server

PN RN

4.2.2 Search

As shown in Algorithm 2, the client can search the docu-
ments containing a specific keyword w; as the following
steps.

e Step-1: Given a search keyword w;, the client randomly
chooses k — 1 distinct keywords from W\ {w;}. In this
case, counting the queried keyword w;, the client has &
keywords in total, denoted by {w,, ..., w,,}. For each
keyword w,,, the client computes its location in EDB as
loc; = F(wy,, FileCnt[w,,]||0) for I = 1,2,... k. Then,

the client sends these k locations {locy, locy, . . ., locy} to
the server.
e Step-2: On receiving locations {locy,locs,. .., locy}

from the client, the server finds out the encrypted
value of each location in DictW, i.e., DictWloc] for
l=1,2,...,k, and puts them in CList. Then, it
returns CList to the client.

e Step-3: On receiving the CList containing k encrypted
values from the server, the client uses secret key K to
recover each B, as B, = CList[l]® G(Fk(w,,
FileCntlw,]||1) for I =1,2,... k. If r; is equal to i,
the client recovers ID; from B,, (i.e., B;) to obtain all
documents’ identifiers matching wj, i.e., the desirable
query result.

e Step-4: The client updates each w,,’s value in FileCnt,
ie., FileCnt[w,] = FileCnt[w,]+ 1. Then, with the

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

ZHENG ETAL.: ACHIEVING PRACTICAL SYMMETRIC SEARCHABLE ENCRYPTION WITH SEARCH PATTERN PRIVACY OVER CLOUD

updated FileCnt[w,,], the client generates a new key-
value vpair (loc,¢;) for (w,,B,), where loc; =
Fg (wy, FileCntw,)||0) and ¢ = G(Fg(w;, FileCnt
[wy,][|1)) ® B,,. After that, the client sends these &
new key-value pairs to the server.

e Step-5: Finally, the server stores each new key-value
pair in DictW, i.e., {DictW(log)] = ¢|l = 1,2, ..., k}.

Algorithm 2. Search(K, w;, 0, k;EDB)

Client:

1: Randomly choose k — 1 distinct keywords from W\ {w; }
w; and the chosen keywords are denoted by {w,,, ..., w,, }
: Loclist = {}

: forl=1tokdo
locy = Fg(w,,, FileCnt[w,,]||0)
Loclist = Loclist U loc;
end for

8: Send Loclist = {locy, . .
Server:

9: CList = {}

10: for ! = 1 to Loclist.size do

11: CList = CList U DictWloc]

12: end for

13: Send CList to the Client

Client:

14: for! = 1to CList.size do

15: B, = CList[l] ® G(Fg(w,,, FileCntw,,]||1)
16: ifr; ==ithen

17: Recover ID; from B,, (B;), i.e., the desirable
18: result

19: endif

20: end for

21: // Generate new key-value pairs

22: LocList = {}, CList = {}

23: for!=1to kdo

24: FileCnt[w,]++

25: loc; = Fr(wy,, FileCnt[w,]|0)

260 ¢ = G(Fx(w, FileCnt[w,]|[|1)) ® By,
27: LocList = LocList U log

28: CList = CListUq

29: end for

30: Send LocList and CList to the server
Server:

31: forl=1to kdo

32: DictW]LocList[l]] = CList|l]

33: end for

N TR

., locy.} to the server

4.2.3 Update

The update protocol is designed for updating the docu-
ments stored on the server, where the update operations
include addition and deletion. That is, the client can add/
delete a keyword w; from a given document id; as follows.
The first two steps in the update protocol are the same as
that in the search protocol, so the client and the server first run
the first two steps of the search protocol, which returns CList
to the client. Then, the client uses the secret key K to recover
each B, as B, = CList[l] ® G(Fk(w,, FileCnt[w,]||1) for
1=1,2,... k. After that, based on the update operation op,
the client adds/deletes w; from id; by updating w;’s bitmap
By, (By). If op is addition, set b, ; = 1. Otherwise, b,,; = 0.
Finally, the client and the server follow step 4 and step 5 of the

1363

search protocol to finish the remaining update protocol. That
is, the client generates a new key-value pair for each (w,,, B,)
and sends them to the server. On receiving new key-value
pairs from the client, the server stores them in EDB.

Algorithm 3. Update(K, op, (w;, id;),o, k; EDB)

1: The client and the server run the first two steps of the
search protocol, which returns CList to the client.
Client:
2: forl = 1to CList.size do
3: B, = CList[l] ® G(Fx (wy,, FileCnt[w,,]||1)

4. ifr; == then
5: if op == addition then
6: set br[‘]' =1lin B’“l = br141b7‘],2 s b"l»N
7: else if op == deletion then
8: set sz-,j =0in BTZ = brl,lbrl‘Z N er,N
9: endif

10: endif

11: end for

12: The client and the server follow step 4 and step 5 of the
search protocol to finish the remaining update protocol.

Note that, in the update protocol, one update operation
allows the client to update one keyword for a given docu-
ment. Then, when the client intends to add /remove a docu-
ment with v keywords, the client needs to run the update
protocol u times in total, i.e., add/remove these u keywords
one by one. In addition, the anonymous parameter % in the
update protocol is closely related to the security level of our
proposed scheme, i.e., the security is strengthened as k
becomes larger. At the same time, it can be dynamically
changed among different search queries or update opera-
tions according to different security requirements.

4.3 Extended SSE Scheme Supporting Boolean
Queries

In this subsection, we extend our basic SSE scheme to sup-
port boolean queries, i.e., search the documents whose key-
words satisfy a specific boolean function BF(wy,,...,w,,),
where {wy,,...,wy,} is a set of queried keywords. In spe-
cific, the boolean function BF(wy,,...,w,,) can support the
“AND”, “OR” and “NOT” operations between keywords
{wg,,...,wq, }. When the client intends to do such kind of
boolean queries, he/she first chooses an anonymous param-
eter k such that k is satisfied with the security requirement
and k& > u. With £, the client selects (kK —u) random key-
words and uses them together with u queried keywords to
construct a search query. Then, he/she follows the search
protocol to obtain a set of bitmaps {B,,,..., B,, } matching
the queried keywords {wy,,...,wg, }. With these bitmaps,
the client computes the boolean function BF(By,, ..., By,)
and the result is the bitmap of the documents’ identifiers
matching BF(wy,,...,w,,). For example, when BF(w:,ws,
w3) = w; Aws Aws and the bitmaps matching {w;, wa, ws}
are {Bj, By, Bs}, the client can compute BF(B;, By, Bs) =
By A By A Bs, which is the bitmap of documents’ identifiers
satisfying w; A wa A ws. Furthermore, the client recovers the
documents’ identifiers from the bitmap B; A By A Bs. At the
same time, he/she follows the search protocol to generate k
new key-value pairs for the k searched keywords and sends
them back to the server. Since the overall procedure of the

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

1364

boolean queries is the same as that of single keyword
queries, the boolean queries in our extended SSE scheme
are as efficient as single keyword queries in our basic SSE
scheme.

Discussion. Note that both our basic scheme and extended
scheme can support multiple-keyword update, i.e., the cli-
ent can update and delete multiple keywords together. In
specific, if the client attempts to update u keywords
{wg,, ..., wy,}, he/she first chooses an anonymous parame-
ter k such that k is satisfied with the security requirement
and k > u. With k, the client selects (k —) random key-
words and uses them together with u queried keywords to
construct update request. Then, he/she follows the update
protocol to obtain a set of bitmaps {B,,, ..., By, } matching
the updated keywords {wy,,...,w,,}. Finally, the client
updates these bitmaps, generates £ new key-value pairs for
all k£ keywords, and sends them back to the server. The mul-
tiple-keyword update operation allows the client to add a
new document or remove an obsolete document much
more efficiently than the single keyword update protocol in
our basic scheme because a multi-keyword update opera-
tion can simultaneously update multiple keywords instead
of one keyword.

5 SECURITY ANALYSIS

In this section, we analyze the security of our basic SSE
scheme and extended SSE scheme. In specific, we present
that our proposed scheme achieves the privacy concerns
described in Section 3.2, i.e., search pattern privacy, forward
privacy and enhanced backward privacy.

5.1 Security Analysis of Basic SSE Scheme

o Search Pattern Privacy: The search pattern is the information
regarding which queries refer to the same queried keyword.
Since the obfuscating technique employs the k-anonymous
query technique, which processes the queried keyword
together with k£ — 1 random keywords, it is difficult for the
adversary to distinguish which keyword is the real queried
keyword. Then, if the adversary attempts to link all queries
matching a specific queried keyword w; € W, the first step is
to collect all queries containing w; and the second step is to
distinguish in which queries w; is regarded as a random key-
word and in which queries w; is a real queried keyword. In
the first step, the adversary can use a backtracking method to
track all possible queries involving the keyword w;.

Suppose that a single keyword query @ involves k key-
words including a real queried keyword w; and k£ — 1 ran-
dom keywords. At the same time, these keywords
correspond to k key-value pairs in EDB. Then, based on
them, the adversary can backtrack k previous search
queries, called)’s adjacent queries, in which the & key-
value pairs accessed in () are respectively updated. For
example, if the query @ accesses EDB’s encrypted values
{c1,¢2,..., ¢}, queries {Q1,Q2,...,Qx} are @Q’s adjacent
queries when ¢; is updated in @), as shown in Fig. 4. Simi-
larly, the adversary can continue to backtrack each Q;’s
adjacent queries and @);’s adjacent queries’ adjacent queries
until no more queries can be further backtracked. Then, the
backtracking process forms a backtracking tree with the
query () as the root node, and only one path from @) to the

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Linkable {Q1; = Q1 — Q} with % probability when they match a same queried keyword w;

]
'
|
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
|
1
|

A
'
'
'
'
'
'
'
'
'
1
|
'
'
'
'
'
'
'
'
'
'
'
|
1
'
'
'
'
'

I
1

I

I

I

Qul| ~ Re-encrypt |~ :
I

C1k \ |
cee vee Re-encrypt i
I

€111 / C1k |
Re-encrypt i

Q1k yp !
I

|

v

lg====-==

e

Cik

€11k

Ck11
le Re-encrypt

Ck1
Ck1k \ Cr1
et Cike
Qi [|Re-encrypt

Clukk

Re-encrypt|
—_— k

Fig. 4. The backtracking tree of the obfuscating technique when h = 2: if
the queries {Q11 — Q1 — Q} match a same keyword w;, the probability
of linking them together is .

first query containing w; is the exact queries sequence con-
taining w;. If the depth of the backtracking tree is h, the
adversary has ;; probability to successfully discover the cor-
rect queries sequence matching w;. As shown in the Fig. 4,
when h =2 and the queries sequence matching w; is
{Q11 — Q1 — @}, the probability of linking them together is
- Then, when k=10 and % = 10, the probability will be
1 x 107'° Thus, it is difficult for the adversary to discover
all queries involving w;. Even if he/she discovers all queries
involving wj, the client is still not confident with the result,
since w; may be just a random keyword in some of such
queries. Therefore, our basic SSE scheme can well preserve
the search pattern privacy. In addition, the search pattern
privacy also enables our basic scheme to resist the keyword
frequency attack, i.e., the server uses the frequency of each
keyword being queried to inference the queried keyword in
a specific query.

e Forward Privacy: The forward privacy ensures that the
current update keyword should not be linked to the key-
words that were searched before. In our basic SSE scheme,
the update protocol is k-anonymous, i.e., during an update
operation, the updated keyword will be updated together
with other £ — 1 random keywords. Suppose that w; is the
updated keyword and {w,,,w,,...,w,_,} denotes k—1
random keywords. Then, in the update protocol, the client
sends an update request together with £ locations matching
w; and other k — 1 random keywords to the server, where
these k locations are generated by PRF. The security of PRF
guarantees that the server can only observe k locations and
has no idea on real keywords matching these locations. Sim-
ilarly, in the search protocol, the client also has no idea on
which %k keywords are being searched. Then, it is difficult
for the server to break the forward privacy by deducing the
real keywords in the current update operation and previous
search queries.

Without knowing the real keywords, the server just can
observe the relationship of encrypted data records matching
the updated/searched keywords to infer the relationship
between the current keyword and previous searched

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

ZHENG ETAL.: ACHIEVING PRACTICAL SYMMETRIC SEARCHABLE ENCRYPTION WITH SEARCH PATTERN PRIVACY OVER CLOUD

keywords. Given k encrypted data records in the current
update operation, the server has } probability to successfully
guess which one exactly matches the updated keyword w;.
Then, the server can further find the current query’s adja-
cent update/search queries. The adjacent query is either an
update query or a search query. In case of the update query,
the server has to continue to find adjacent queries” adjacent
queries. However, it is more difficult for the server to match
them with w; because an adjacent query has k adjacent
queries and each such query also contains k queried key-
word. Even if the previous query is a search query, the
adversary also cannot confirm whether w; is regarded as a
queried keyword or a random keyword in that query. At
the same time, the latter case, i.e., w; is just regarded as a
random keyword, is more likely to appear under the
assumption that each keyword is randomly searched. In
this case, it is difficult for the server to link previous search
queries matching w; with the current update operation.

Besides, the update operation in our basic SSE scheme
only leaks the type of update operation op, the identifier of
the updated document id; and all keywords’ last updated
timestamps ~ LastTime(W), ie., L% (op w;,id;) = L'
(op,id;, LastTime(W)). Actually, the leakage of op and id;
comes from the update on the real document. In specific,
the real updated document and its length change respec-
tively leak the identifier of updated document and the
update operation. Thus, based on the definition of forward
privacy, our basic SSE scheme can achieve forward privacy.

o Enhanced Backward Privacy: The enhanced backward
privacy ensures that search queries on keyword w; cannot
be linked to the documents that contain w; but have been
deleted previously. The documents” identifiers that contain
w; but have been deleted previously can be leaked in two
ways. The first way is that ID; contains such kind of identi-
fiers, but it is almost impossible to happen in our basic SSE
scheme. This is because the client will immediately change
ID; when a document deletes w;. Thus, ID; cannot contain
the documents’ identifiers that have been deleted. The sec-
ond way is to link the current search query with previous
deletion update queries, which is also difficult in practice.
Since the search protocol and update protocol are extremely
similar, and both of them conduct k-anonymous queries.
Thus, linking an update query with previous search queries
matching w; is as difficult as linking a search query with
previous update queries matching w;. In the above discus-
sion, we have shown that it is difficult for the server to link
an update query with previous search queries. Thus, it is
difficult to link a search query with previous update
queries. Furthermore, it is also difficult to link a search
query with previous deletion update queries.

Besides, as discussed above, the leakage function of the
update operation is £""(op, w;,id;) = L (op,id;, LastTime
(W)). At the same time, the search query leaks the doc-
uments’ identifiers matching each searched keyword and all
keywords’ last updated timestamps, ie., L5 (w;) =
L"(ID;, LastTime(W)). Actually, the leakage ID; comes from
the search on real documents. For example, when the client
recovers ID;, he/she needs to request the real documents by
sending ID; to the server, which will leak ID; to the server.
Thus, based on the definition of backward privacy, our basic
SSE scheme satisfies enhanced backward privacy.

1365

Theorem 1. Suppose that F' and G are secure PRF and PRG, our
basic SSE scheme is adaptively-secure with leakage L"P"'®
(op,w;,id;) = L' (op, id;, LastTime(W)) and L5 (w;) =
L"(1D;, LastTime(W)).

Proof. In the real-world game, suppose that the server
observes ¢ transcripts in total. The transcript observed
from the setup algorithm includes the initialized EDB, and
each other transcript observed from the update/search
protocol includes k original key-value pairs and k updated
key-value pairs matching the queried keywords as
described in Section 4.2. In the following, we describe our
simulator Sim, which is comprised of three algorithms,
i.e., SimSetup, SimUpdate and SimSearch. O

e SimSetup()\): In the setup algorithm, Sim first generates
d key-value pairs {(loc;, ¢;)|i = 1,2, ...,d}, where each loc; is
a random number in the range of /" and each ¢; is a random
binary string with length N. For each key-value pair
(loci, ¢;), Sim sets DictW(loc;] = ¢;. Then, it sets EDB to be
DictW and sends it to the server. Finally, Sim sets the local
state of the simulator to be null, i.e., o5 = null, and locally
stores each loc; and the timestamp that it was last updated,
ie, {(t,loc)li =1,2,...,d}.

e SimUpdate(os, L7 (op, w;, id;),EDB): In the update
protocol, Sim receives the leakage function £ (op
id;) = L'(op, id;, LastTime(W)). Suppose that the involved k
key-value pairs matching the queried keywords were last
updated in timestamps {¢1,..., ¢}, respectively. Then, Sim
randomly chooses k locations {locy, locs, . .., loc} such that
the last update timestamp of each loc; is t; for 1 = 1,2,... k,
and sends them to the server. After receiving the response
from the server, Sim randomly generates k new key-value
pairs, where each location is a random number in the range
of F' and each value is a random binary string with length
N. Finally, Sim sends them to the server, and locally stores
each location and the timestamp that it was last updated.

e SimSearch(os, L (w;), EDB): In the search protocol,
Sim receives the leakage function L% (w,)= L£'(ID;,
LastTime(W)). Sim first chooses k random locations with the
same method in the SimUpdate protocol and sends them to
the server. When receiving the response from the server, Sim
randomly generates k£ new key-value pairs and sends them to
the server. At the same time, Sim locally stores each location
and the timestamp that it was last updated. Finally, Sim sends
the ID; to the server.

For the transcript in the setup algorithm, since the d key-
value pairs in the real-world game are generated by the PRF
F and PRG G, they are indistinguishable from the random
key-value pairs in the ideal-world game. For the transcripts
in the update/search protocol, the timestamps of the & loca-
tions matching the queried keywords in the ideal-world
game are the same as that in the real-world game, and the
documents’ identifiers matching the searched/updated
keyword w; in the ideal-world game are the same as that in
the real-world game. Thus, the transcripts of search/update
protocol in the ideal-world game are also indistinguishable
from those in the real-world game. Consequently, all the ¢
transcripts in the ideal-world game are indistinguishable
from those in the real-world game. Therefore, our basic SSE
scbhen?e is adaptively-secure with leakage L7 and
L: E€arc l,. .

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

1366

5.2 Security Analysis of Extended SSE Scheme

For our extended SSE scheme, the forward privacy and
enhanced backward privacy can be achieved and the detailed
security analysis is the same as that in our basic SSE scheme.
As for the search pattern privacy, it can be analyzed from two
aspects. On the one hand, we consider the search pattern pri-
vacy of a single queried keyword, which is the same as that in
the basic SSE scheme. Thus, the single keyword’s search pat-
tern privacy can be easily achieved. On the other hand, we con-
sider the search pattern privacy when regarding all involved
keywords as a whole. In this case, the search pattern means the
information that which queries refer to the same set of queried
keywords. Since a boolean query contains multiple keywords
and the number of possible keywords combinations in a search
query is large, about 2¢ — () = 2? — 1 when at least one key-
word is queried, where d is the number of keywords, the num-
ber of queries containing the same keywords set is relatively
small. In specific, a single keyword query in the basic SSE
scheme only contains a real queried keyword and has d possi-
bilities, while a boolean query in the extended SSE scheme
may contain i keywords (1 < i < d) and has () possible key-
words combinations. Then, the probability that different
search/update queries contain the same queried keywords set
is relatively low. At the same time, even if there exist some
such kind of queries, the obfuscating technique guarantees that
it is difficult to link them as described in Section 5.1. Thus, from
the perspective of probability, it is difficult to deduce the search
pattern privacy when regarding all involved keywords as a
whole. Therefore, the search pattern privacy of our extended
SSE scheme is even stronger than that in our basic SSE scheme.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme with regard to the computational cost and communica-
tion overhead in search/update protocol, as well as the storage
overhead at the client side. At the same time, we compare the
computational cost of search queries between our proposed
scheme and the most efficient implementation of a forward
and backward private scheme so far (i.e., MITRA) [14]. Since
our extended SSE scheme is based on our basic SSE scheme
and has the similar performance as our basic SSE scheme, we
focus on evaluating the performance of our basic SSE scheme.
In specific, we implement our scheme in Java and conduct
experiments on an Intel(R) Core(TM) i7-3770 CPU @3.40 GHz
Windows Platform with 16 GB RAM. In our experiments, we
respectively use HMAC-SHA1 as the PRF and a mersenne
twister algorithm based generator as the PRG [17]. The secret
key K is set to be a 160-bit random number, i.e., | K| = 160. For
the MITRA scheme, we evaluate it with the code released by
authors [18]. In addition, we evaluate our scheme using syn-
thetic dataset. Specifically, we randomly generate 10° key-
words and each search/update operation involves k&
keywords, where the value of k is set to be 10,20, 30. At the
same time, we set the maximum number of documents in the
system, i.e., N, ranges from 102 to 10°. All experiments were
conducted 100 times and the average is reported.

6.1 Computational Cost

Search. As described in Section 4.2, the search protocol in our
scheme consists of two rounds and all of the involved

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

computational cost is at the client side. Suppose that Cazac,
Cpre and Cxor respectively denote the computational com-
plexity of HMAC operation, pseudorandom number genera-
tion operation and XOR operation. Then, in the first round,
the client requires %k x Cpyrac computational complexity to
compute the locations associated with the current k queried
keywords. In the second round, the client requires
k x (Crgmac + Cpre + Cxor) computational complexity to
recover the documents’ identifiers matching the queried key-
words. After that, he/she needs to re-encrypt the doc-
uments’ identifiers for each queried keyword and generate a
new location for each encrypted documents” identifiers with
k x (2 Cumac + Cpra + Cxor). Thus, in the search proto-
col, the overall computational cost at the client side is
kx (4-Cpmac +2 - Cpre + 2 - Cxog). Since pseudorandom
number generation operation is to generate an N-bit binary
string and XOR operation is over two N-bit binary strings,
Cpra and Cxop, are related to the parameter N. Furthermore,
the computational complexity of the search protocol is
related to the anonymity parameter & and the maximum
number of documents in the system V. In Fig. 5a, we plot the
average computational cost of our search protocol versus k
and N. From Fig. 5a, we can see that the search protocol is
extremely efficient even if the runtime of search linearly
increases as k and N. For example, when k=30 and
N = 10°, the runtime of each search operation is just 2.4 ms.

Update. As described in Section 4.2, the update protocol
also consists of two rounds and it executes almost the same
operations as the search protocol, i.e., retrieve the data records
matching the & queried keywords, re-encrypt them and send
back to the server. The only difference is that the update pro-
tocol needs to additionally add /delete the updated document
identifier, but the computational cost in this operation is low
compared with other operations. Thus, the computational
cost of the update protocol has the same trend but a little
larger than that of the search protocol as shown in Fig. 5b.

Comparison With MITRA. In the literature, existing search-
able encryption schemes can be divided into two categories,
i.e., the ORAM and homomorphic encryption based schemes
and SSE schemes. The ORAM and homomorphic encryption
based schemes can achieve the same security level with our
proposed scheme, i.e., simultaneously satisfy the forward
privacy, backward privacy and search pattern privacy. How-
ever, compared with most of the SSE schemes, such kinds of
schemes are computationally expensive and inefficient.
Obviously, our proposed scheme is a SSE scheme and it is
much more efficient than the ORAM and homomorphic
encryption based schemes. As for the SSE based schemes,
most of them cannot achieve backward privacy and none of
them can achieve search pattern privacy, so they leak more
privacy information than our proposed scheme. Thus, our
proposed scheme leaks the least information.

In the following, we show that our proposed scheme is
extremely efficient with regard to the search operation by
comparing our scheme with the most efficient implementa-
tion of a forward and backward SSE scheme, i.e., MITRA. In
specific, we compare the search efficiency between our pro-
posed scheme and MITRA when variable N ranges from
10% to 10° and the size of the matched documents is set to be
1000 as shown in Fig. 5c. From Fig. 5c, we can see that our
proposed scheme has better search performance than the

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

ZHENG ETAL.: ACHIEVING PRACTICAL SYMMETRIC SEARCHABLE ENCRYPTION WITH SEARCH PATTERN PRIVACY OVER CLOUD

5

45l [TO—K=10 |

: —A—K=20

—%—k=30

g i

35+ -
m
E 3} 1
£
=251 q
o 3
S
3 27]
(2]

15+

1L

0.52

0 ‘ ‘

102 10° 10* 10°

The maximum number of documents in the system

(a) Search time vs the anonymous parameter k£ and the maximum number
of documents NV in the system

5

45l |~ k=10 |
' —A— k=20
4 —%—k=30

w
3
T
I

w
T
I

Update time (ms)
N b

0.5%4 4 1

0 . .
102 108 10* 10°
The maximum number of documents in the system

(b) Update time vs the anonymous parameter k£ and the maximum number
of documents NV in the system

10

——k=10
9 | —A—«k=20 1

—*—k=30
8 |—¢ —MITRA ,
ran J
-—————————— == - ———————

Search time (#matched ids = 1000) (ms)

: %5

0 .
108 10* 10°
The maximum number of documents in the system

(c) Search time comparison between our basic SSE scheme and MITRA
when the number of matched documents N is 1000

Fig. 5. Performance evaluation of our basic SSE scheme.

MITRA when the size of the matched documents is 1000.
Therefore, our scheme achieves the best search efficiency.

Overall, our scheme not only achieves the best search
efficiency, but also leaks the least information.

1367

108

I < = 10
Ik =20
k=30

104 F -]

10° | 1

Communication overhead (Byte)

102
102 10° 10* 10°
The maximum number of documents in the system

Fig. 6. Communication overhead vs the anonymous parameter £ and the
maximum number of documents N in the system.

6.2 Communication Overhead

As described in Section 4.2, the search protocol and update
protocol are two-round protocols and they involve the same
communication overhead. In specific, in the first round, the cli-
ent sends the locations of the queried keywords to the server.
As HMAC-SHAL1 is employed as PRF to generate these loca-
tions, the size of each location is 160 bits and the overall com-
munication overhead for k locations is k£ x 160 bits. At the
same time, the server needs to return the encrypted values
matched the requested locations to the client and each of them
is N bits. Hence, the communication overhead for the
encrypted values is k x N bits. In the second round, the client
returns k pairs new encrypted values and locations to the
server and the communication overhead is k x (160 4+ N) bits.
Thus, the overall communication overhead in search/update
protocolis k x (2 x 160 + 2 x N). Fig. 6 plots the communica-
tion overhead of our search/update protocol versus k and V.
From Fig. 6, we can see that the communication overhead line-
arly increases as kand V.

6.3 Client Storage

In our scheme, the client needs to locally store a 160-bit secret
key and a map FileCnt containing d key-value pairs, where
the value in the FileCnt is the number of times that each key-
word is accessed (i.e., searched /updated). Suppose that the
maximum number of times that a keyword is accessed is set
to be Nyccess- Then, the storage overhead at the client side is
(160 + d X 10g 5 Naceess) bits. When d = 10* and N, qqess = 107,
the client’s storage overhead is roughly 8.77 KB.

7 RELATED WORK

With the explosive growth of data and enhancement of pri-
vacy awareness, more and more individuals and organiza-
tions choose to outsource encrypted data to the cloud. At
the same time, in order to efficiently access and maintain
the outsourced encrypted data, they expect to deploy a kind
of encryption that can achieve privacy-preserving search
and update over encrypted data, i.e., searchable encryption,
which enables search over outsourced encrypted data and

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

1368

has attracted considerable attention from academia and
industry. For the searchable encryption, security and effi-
ciency are two main concerns and need to be balanced. In
the literature, ORAM technique was deployed to design
highly secure searchable encryption schemes, which can
preserve all security concerns of encrypted data [6], [19].
Similarly, fully homomorphic encryption together with
functional encryption also can be used to design highly
secure searchable encryption [5]. However, the overhead of
such schemes is too large and not practical.

SSE attempts to improve the search efficiency of search-
able encryption scheme at the cost of small leakage includ-
ing search pattern and access pattern. In 2000, Song et al. [4]
proposed the first symmetric searchable encryption scheme
and the search time over one document is linear to the
length of the document. Then, Curtmola et al. [7] first
defined the security of SSE, i.e., adaptive security of SSE
and introduced the first inverted index based SSE scheme
with sublinear search time. The inverted index technique
builds a map from each keyword to the documents’ identi-
fiers matching it, which is an important basis for many sub-
sequent works.

However, the aforementioned proposals are static SSE
schemes and they cannot support dynamical update of out-
sourced encrypted data. Compared with static SSE schemes,
dynamic SSE schemes have rich functionality and are more
desirable in practice. In 2012, Kamara et al. [8] introduced
the first dynamic SSE scheme with sub-linear search time,
but this scheme reveals the updated document’s unique
keywords. Then, Kamara and Papamanthou [9] designed a
new dynamic SSE scheme to overcome the limitation in [8].
At the same time, Cash ef al. [10] designed a dynamic SSE
scheme for very-large databases.

Nevertheless, dynamic SSE schemes have more leakages
than static SSE schemes including forward privacy and
backward privacy. Forward privacy guarantees that the cur-
rent update operation cannot be linked to previous search
queries, which first introduced in [11]. Then, Stefanov et al.
[20] introduced an ORAM based forward private scheme.
Bost et al. [21] presented the formal definition of forward
privacy and proposed an insertion-only scheme with opti-
mal search and update complexity. Zhang et al. [12] pre-
sented a file-injection attack to reveal search queries by
injecting few documents, and this attack is particularly
effective, especially when the dynamical SSE is not forward
private. From then on, the forward privacy becomes
increasingly important in dynamic SSE. However, the
authors pointed out that although the file-injection attack is
effective and can be conducted easily in some system, it
may be much more difficult to conduct such attack in the
“closed systems”. This is because all documents in the
“closed systems” are outsourced by the client and it is
almost impossible for an adversary to inject documents into
the systems, e.g., our proposed scheme.

The backward privacy guarantees that the current search
keyword cannot be linked to the documents that match the
search keyword but have been deleted before. Stefanov et al.
[20] first introduced the notion of backward privacy to cap-
ture the leakage associated with deleted entries, but they
neither described the definition of backward privacy nor
presented a backward private SSE. Bost et al. presented a

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

formal definition of backward privacy with three different
types of leakages from most to least secure, and constructed
four backward private SSE schemes that achieve different
types of backward privacy [13]. Based on the work in [13],
Chamani et al. [14] proposed three back-private construc-
tions which improved the results of [13] in several ways. At
the same time, Sun et al. [15] adopted the symmetric punc-
turable encryption technique to design a practical and
non-interactive backward private SSE scheme. Recently,
Zuo et al. proposed a dynamic SSE scheme with stronger
backward privacy [22].

The above work focuses on the single keyword query.
Although the single keyword query based SSE schemes can
be easily extended to support complex queries, they are not
efficient in complex queries. Thus, much of work on SSE
focuses on supporting more complex query expressions
such as multi-keyword query, boolean query, conjunctive
query, disjunctive query and so on. Cash et al. [23] designed
a SSE scheme to support conjunctive query and even boolean
query. Faber et al. [24] extended the scheme in [23] to support
more complex queries such as range query, substring query,
wildcard query and phrase query. Pappas et al. [25] proposed
a solution to support a rich query set including arbitrary
boolean query and free keyword searches etc. Fisch et al. [26]
proposed a SSE scheme to support boolean query and range
query with sub-linear search time. Kamara et al. [27] and Lai
et al. [28] respectively proposed a solution for disjunctive
query and conjunctive query. Recently, Zuo et al. [29]
designed two dynamic SSE schemes to support range
queries and Shao et al. [30] proposed a verifiable scheme to
support conjunctive and fuzzy queries.

8 CONCLUSION

In this paper, we have designed a practical SSE scheme with
search pattern privacy, forward privacy and enhanced
backward privacy, and extended it to support boolean
queries. In specific, we leveraged k-anonymity and encryp-
tion technique to design an obfuscating technique. Then,
based on the obfuscating technique, we deployed pseudo-
random function and pseudorandom generator to design a
single keyword queries based dynamic SSE scheme, and
extended it to support efficient boolean qiueries. At the
same time, we analyzed the security of our scheme and
showed that the proposed scheme achieves desired security
properties, i.e., search pattern privacy, forward privacy,
and enhanced backward privacy. Besides, we conducted
extensive experiment to evaluate the performance of our
proposed scheme and the results showed that the proposed
scheme is efficient in terms of communication overhead and
computational cost. Our future work is to further improve
the efficiency of search and update operations without
weakening SSE scheme’s privacy preservation.

ACKNOWLEDGMENTS

This research was supported in part by NSERC Discovery
Grants (04009), ZJNSF LZ18F020003, NSFC U1709217,
National Key Research and Development Program of China
(2017YFB0802200), National Natural Science Foundation of
China (61972304), and Natural Science Foundation of
Shaanxi Province (2019ZDLGY12-02).

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

ZHENG ETAL.: ACHIEVING PRACTICAL SYMMETRIC SEARCHABLE ENCRYPTION WITH SEARCH PATTERN PRIVACY OVER CLOUD

REFERENCES

[1]

[2]

[3]

[4]

[5]
[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

“Data-sharing and cloud: A big data match made in heaven,”
[Online]. Available: https://www.computerweekly.com/blog/
Ahead-in-the-Clouds

Y. Zheng, R. Lu, B. Li, J. Shao, H. Yang, and K. R. Choo, “Efficient
privacy-preserving data merging and skyline computation over
multi-source encrypted data,” Inf. Sci., vol. 498, pp. 91-105, 2019.
Y. Zheng, R. Lu, and J. Shao, “Achieving efficient and privacy-pre-
serving K-NN query for outsourced ehealthcare data,” J. Med.
Syst., vol. 43, no. 5, pp- 123:1-123:13, 2019.

D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
2000, pp. 44-55.

S. Goldwasser ef al., “Multi-input functional encryption,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptogr. Techn., 2014, pp. 578-602.

S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient
oblivious RAM in two rounds with applications to searchable
encryption,” in Proc. Annu. Int. Cryptology Conf., 2016, pp. 563-592.
R. Curtmola,]J. A. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: improved definitions and effi-
cient constructions,” in Proc. 13th ACM Conf. Comput. Commun.
Secur., 2006, pp. 79-88.

S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. Int. Conf. Financial Cryptography
Data Secur., 2012, pp. 965-976.

S. Kamara and C. Papamanthou, “Parallel and dynamic search-
able symmetric encryption,” in Proc. Int. Conf. Financial Cryptogra-
phy Data Secur., 2013, pp. 258-274.

D. Cash et al., “Dynamic searchable encryption in very-large data-
bases: Data structures and implementation,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2014.

Y. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Proc. 3rd Int. Conf. Appl.
Cryptography Netw. Secur., 2005, pp. 442-455.

Y. Zhang,]J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in Proc. 25th USENIX Conf. Secur. Symp., 2016,
pp. 707-720.

R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2017, pp. 1465-1482.

J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili,
“New constructions for forward and backward private symmetric
searchable encryption,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2018, pp. 1038-1055.

S. Sun et al.,, “Practical backward-secure searchable encryption
from symmetric puncturable encryption,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2018, pp. 763-780.

O. Goldreich, S. Goldwasser, and S. Micali, “How to construct
random functions,” J. ACM, vol. 33, no. 4, pp. 792-807, 1986.

M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimen-
sionally equidistributed uniform pseudo-random number gener-
ator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp. 3-30, 1998.
J. G. Chamani, “Implementation of mitra, orion, horus, fides, and
dianadel,” 2018. [Online]. Available: https://github.com/
jgharehchamani/SSE

O. Goldreich and R. Ostrovsky, “Software protection and simula-
tion on oblivious rams,” . ACM, vol. 43, no. 3, pp. 431-473, 1996.
E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic
searchable encryption with small leakage,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2014.

R. Bost, “ ogog: Forward secure searchable encryption,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 1143-1154.
C. Zuo, S. Sun, J. K. Liu, J. Shao, and]. Pieprzyk, “Dynamic search-
able symmetric encryption with forward and stronger backward
privacy,” in Proc. Eur. Symp. Res. Comput. Secur., 2019, pp. 283-303.
D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Proc. Annu. Cryptology Conf.,
2013, pp. 353-373.

S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and
M. Steiner, “Rich queries on encrypted data: Beyond exact
matches,” in Proc. Eur. Symp. Res. Comput. Secur., 2015, pp. 123-145.
V. Pappas et al., “Blind seer: A scalable private DBMS,” in Proc.
IEEE Symp. Secur. Privacy, 2014, pp. 359-374.

[26]

[27]

[28]

[29]

[30]

1369

B. A. Fisch et al., “Malicious-client security in blind seer: A scal-
able private DBMS,” in Proc. IEEE Symp. Secur. Privacy, 2015,
pp- 395-410.

S. Kamara and T. Moataz, “Boolean searchable symmetric encryp-
tion with worst-case sub-linear complexity,” in Proc. Annu. Int.
Conf. Theory Appl. Cryptographic Techn., 2017, pp. 94-124.

S. Lai et al., “Result pattern hiding searchable encryption for
conjunctive queries,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2018, pp. 745-762.

C. Zuo, S. Sun, J. K. Liu, J. Shao, and]. Pieprzyk, “Dynamic search-
able symmetric encryption schemes supporting range queries
with forward (and backward) security,” in Proc. Eur. Symp. Res.
Comput. Secur., 2018, pp. 228-246.

J. Shao, R. Lu, Y. Guan, and G. Wei, “Achieve efficient and verifi-
able conjunctive and fuzzy queries over encrypted data in cloud,”
IEEE Trans. Services Comput., 2019, to be published, doi: 10.1109/
TSC.2019.2924372.

Yandong Zheng received the MS degree from the
Department of Computer Science, Beihang Univer-
sity, China, in 2017, and she is currently working
toward the PhD degree with the Faculty of Com-
puter Science, University of New Brunswick,
Canada. Her research interest includes cloud
computing security, big data privacy and applied pri-
vacy.

Rongxing Lu (Senior Member, |IEEE) received
the PhD degree from the Department of Electrical
& Computer Engineering, University of Waterloo,
Canada, in 2012. He is currently an associate
professor with the Faculty of Computer Science
(FCS), University of New Brunswick (UNB), Can-
ada. Before that, he worked as an assistant pro-
fessor with the School of Electrical and Electronic
Engineering, Nanyang Technological University
(NTU), Singapore from April 2013 to August
2016. He worked as a postdoctoral fellow with the

University of Waterloo from May 2012 to April 2013. He was awarded
the most prestigious “Governor General’'s Gold Medal”. He won the 8th
IEEE Communications Society (ComSoc) Asia Pacific (AP) Outstanding
Young Researcher Award, in 2013. He is presently a senior member of
IEEE Communications Society. His research interests include applied
cryptography, privacy enhancing technologies, and loT-Big Data security
and privacy. He has published extensively in his areas of expertise, and
was the recipient of eight best (student) paper awards from some reputa-
ble journals and conferences. Currently, He serves as the vice-chair
(Publication) of IEEE ComSoc CIS-TC (Communications and Informa-
tion Security Technical Committee). He is the Winner of 2016-17 Excel-
lence in Teaching Award, FCS, UNB.

Jun Shao received the PhD degree from the
Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, Shanghai,
China, in 2008. He was a postdoctoral fellow with
the School of Information Sciences and Technol-
ogy, Pennsylvania State University, Pennsylvania,
PA, from 2008 to 2010. He is currently a professor
with the School of Computer and
Information Engineering, Zhejiang Gongshang
University, Hangzhou, China. His current research
interests include network security and applied

cryptography.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

https://www.computerweekly.com/blog/Ahead-in-the-Clouds
https://www.computerweekly.com/blog/Ahead-in-the-Clouds
https://github.com/jgharehchamani/SSE
https://github.com/jgharehchamani/SSE
http://dx.doi.org/10.1109/TSC.2019.2924372
http://dx.doi.org/10.1109/TSC.2019.2924372

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 3, MAY/JUNE 2022

Fan Yin received the BS degree in information
security from the Southwest Jiaotong University,
Chengdu, China, in 2012. He is currently working
toward the PhD degree in information and com-
munication engineering, Southwest Jiaotong Uni-
versity, and also a visiting student at Faculty of
Computer Science, University of New Brunswick,
Canada. His research interests include search-
able encryption, privacy-preserving and security
for cloud security and network security.

Hui Zhu (Senior Member, IEEE) received the BSc
degree from Xidian University, Xi'an, China, in
2003, the MSc degree from Wuhan University,
Wuhan, China, in 2005, and the PhD degree from
Xidian University, in 2009. He was a research fellow
with the School of Electrical and Electronics Engi-
neering, Nanyang Technological University, Singa-
pore, in 2013. Since 2016, he has been a professor
with the School of Cyber Engineering, Xidian Uni-
versity. His current research interests include
applied cryptography, data security, and privacy.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:21:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

